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Editing Systematic Unity Measure Errors Through Mixture Modelling 

Marco Di Zio, Ugo Guarnera and Orietta Luzi 1 

Abstract 

In Official Statistics, data editing process plays an important role in terms of timeliness, data accuracy, and survey costs. 
Techniques introduced to identify and eliminate errors from data are essentially required to consider all of these aspects 
simultaneously. Among others, a frequent and pervasive systematic error appearing in surveys collecting numerical data, is 
the unity measure error. It highly affects timeliness, data accuracy and costs of the editing and imputation phase. In this 
paper we propose a probabilistic formalisation of the problem based on finite mixture models. This setting allows us to deal 
with the problem in a multivariate context, and provides also a number of useful diagnostics for prioritising cases to be more 
deeply investigated through a clerical review. Prioritising units is important in order to increase data accuracy while 
avoiding waste of time due to the follow up of non-really critical units. 

                                                           
1. Marco Di Zio, Ugo Guarnera and Orietta Luzi, Italian National Statistical Institute, Via Cesare Balbo 16, 00184 Roma, Italy. 
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1. Introduction  
Elements determining the quality of an Editing and 

Imputation (E&I) process are various and have been widely 
discussed in literature (Granquist 1995). We deal with a 
particular non-sampling error that highly affects two main 
competing quality dimensions: timeliness and data accura-
cy. As far as accuracy is concerned, we adopt the definition 
suggested in the Encyclopedia of Statistical Sciences, 
(1999): “accuracy concerns the agreement between statistics 
and target characteristics”. A number of factors can cause 
inaccuracy along the overall statistical survey process. 
Inaccuracy can be reduced during the E&I phase, which can 
be viewed as an “accuracy improvement tool by which 
erroneous or highly suspect data are found, and if necessary 
corrected (imputed)” (Federal Committee on Statistical 
Methodology 1990). 

Due to the complexity of investigated phenomena and 
the existence of several types of non-sampling errors the 
E&I phase can be a very complex and time consuming task 
(Granquist 1996). In the specialised literature a common 
error classification leads to define two different error 
typologies: systematic error and random error. The former 
relates to errors which go in the same direction and lead to a 
bias in statistics, while the latter refers to errors which 
spread randomly around zero and affect the variance of 
estimates (Encyclopedia of Statistical Sciences 1999). Un-
derstanding nature of errors is not only useful in order to 
identify their source and to assess their effects on estimates, 
but also to adopt the most appropriate methodology to deal 
with them (Di Zio and Luzi 2002). While the Fellegi – Holt 
approach (Fellegi and Holt 1976) is a well-established 
paradigm to deal with random errors, systematic errors are 
generally treated by means of ad hoc solutions (see for 

instance Euredit 2003, Vol. 1, Chapter 5). Systematic errors 
are generally treated before dealing with random errors, 
particularly when the latter are tackled through automatic 
software, like for instance the Generalised Editing and 
Imputation System (GEIS) (Kovar, Mac Millan and 
Whitridge 1988) and more recently De Waal (2003).  

In the family of systematic errors, one that has a high 
impact on final estimates and that frequently affects data in 
statistical surveys measuring quantitative characteristics 
(e.g., business surveys) is the unity measure error times a 
constant factor (e.g., 100 or 1,000). This error is due to the 
erroneous choice, by some respondents, of the unity 
measure in reporting the amount of some questionnaire 
items.  

As real examples of surveys affected by this type of 
error, we selected two ISTAT investigations: the 1997 
Italian Labour Cost Survey (LCS) and the 1999 Italian 
Water Survey System (WSS). 

The LCS is a periodic sample survey that collects 
information on employment, worked hours, wages and 
salaries and labour cost on about 12,000 enterprises with 
more than 10 employees. In Figure 1 the logarithm of 
Labour Cost (LCOST), Number of Employees 
(LEMPLOY), Worked Hours (LWORKEDH) are repre-
sented in a scatter plot matrix. Note that the employment 
variable at this editing stage is error free because of a 
preliminary check with respect to information from business 
registers (Cirianni, Di Zio, Luzi and Seeber 2000). The 
analysis of Figure 1 shows that Labour Cost is affected by 
two types of unity measure error (i.e., 1 million and 1,000 
factor), while Worked Hours exhibits only the 1,000 factor 
error. These errors cause the different clusters in Figure 1. 
Note that the clusters in the low left corners of each scatter 
plot represent non-erroneous data. 
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Figure 1. Multiple scatter plot between total labour cost, 
  employees, worked hours (logarithmic scale).  
The WSS example will be described in detail in 

subsection 4.2 where an application of the method proposed 
in this paper for identifying and treating the unity measure 
error will be presented. 

For the unity measure error, the critical point is the 
localisation of items in error rather than their treatment. In 
fact, once an item is classified as erroneous, the optimal 
treatment is uniquely determined and consists in a 
deterministic action recovering the original value through an 
inverse action (e.g., division by 1,000) neutralising the error 
effect.  

The unity measure error is generally tackled through ad 
hoc procedures using essentially graphical representations 
of marginal or bivariate distributions, and ratio edits. A ratio 
edit is a rule stating that the value of a ratio between two 
variables must lie within a predefined interval. The interval 
bounds are generally determined through a priori knowledge 
or via exploratory data analysis, possibly using reliable 
auxiliary information. For this type of error, ratio edits are 
effective when one of the two variables is error free. Fur-
thermore ratio edits allow taking into account only bivariate 
relationships between variables and even using interactive 
graphical inspection (e.g., scatter plot matrix), no more than 
a pairwise analysis can be performed, disregarding more 
complex interactions between variables. Finally, we notice 
that adopting pairwise analyses implies that variables are to 
be treated in a pre-defined hierarchy, thus increasing the 
complexity of the error localisation procedure.  

With traditional approaches, the error localisation prob-
lem is not only complex, but also time and cost consuming. 
Time and cost are mainly affected by: 1) the complexity of 
designing and implementing automatic deterministic ad hoc 
procedures, and 2) the resources spent in manually editing 

observations having low probabilities of being in error 
and/or low impact on target estimates (over-editing). 

In this paper we propose a probabilistic formalisation of 
the problem through finite mixture models (McLachlan and 
Basford 1988; McLachlan and Peel 2000). 

This modelling can provide a principled statistical 
approach, allowing an estimate of the conditional probabil-
ity that an observation be affected by unity measure error. 
The advantage of the proposed approach is that it represents 
a general method allowing a multivariate data analysis, and 
providing elements that can be used to optimise the balance 
between the automatic and interactive components of the 
editing procedure, i.e., between time and accuracy 
(Granquist and Kovar 1997).  

This work is organised as follows. In section 2 the 
proposed model is introduced together with the EM 
algorithm for the estimates of the model parameters. In 
section 3 diagnostics for selective editing are described. In 
section 4 the results of the application of the proposed 
method to both simulated and real data are illustrated. 
Finally, in section 5 concluding remarks and future research 
are outlined.  

2. The Model  
It is hard to give a comprehensive formalisation of 

random and systematic errors. In this context, we provide a 
definition that, though not exhaustive, includes many com-
mon situations. Let *X  be the vector of the survey target 
variables, and ),( ∑*μ   the corresponding mean vector and 
covariance matrix. Let us suppose that the measurement 
process is affected by a random error mechanism R having 
impact on the covariance structure of *X  but leaving the 
mean vector unchanged, and consequently let X  be the 
corresponding “contaminated” variable, with =)(XE  

=)( *XE =, )(Var Xμ .∑  Also, we assume that X  can 
in turn be affected by a systematic error mechanism S acting 
only on its expected value: )(μ μϕ⎯→⎯S  for some function 
ϕ  (e.g., if an additive error mechanism is assumed, =ϕ )(μ  

).constant+μ  As a consequence of the two error mecha-
nisms, assumed to be independent of one another, observed 
data can be described by a random vector Y  whose 
distribution, conditional on ,X  depends only on the 
systematic error mechanism. Our approach to the treatment 
of systematic errors consists of building up a model for Y  
focusing only on the detection of systematic errors, thus 
aiming at recovering the randomly contaminated data 
represented by the random vector .X  This is the approach 
generally adopted in editing procedures, where systematic 
errors and random errors are dealt with separately and 
hierarchically.  

LWORKEDH 

LEMPLOY 

LCOSTS 
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The previous definition of systematic error includes unity 
measure error, once data have been transformed in loga-
rithmic scale. In fact, unity measure error generally acts 
multiplying variables by a constant factor. Hence data in 
error appear in log-scale as translated by a vector of 
constants, that depends on which items are in error (“error 
pattern”), while the covariance structure is the same for each 
error pattern. Moreover, as matter of fact, in business sur-
veys variables are frequently considered log-normal. Thus 
in logarithmic scale the Gaussian setting can be adopted. 

Following the formalisation so far introduced, our goal 
becomes to assign each single observation to a specific 
“error pattern”, that corresponds to localise items in error. If 
we interpret each single error pattern as a “cluster”, the error 
localisation problem is transformed in a cluster analysis 
problem, and we can exploit experiences from the model-
based cluster analysis theory (Fraley and Raftery 2002).  

More in detail, let us suppose we have n  independent 
observations ),...,,( 1 iqii YY=Y ,...,,1 ni =  corresponding 
to the −q dimensional vectors )...,,( 1 iqii XX=X  with 
p.d.f. ),;...,,( 1 θqxxf  such that =)...,,( 1 qXXE  

,= μ)μ...,,μ( 1 q  and =)...,,(Var 1 qXX .∑  
Based on the assumption that systematic errors affect the 

random vector X  only by transforming its expected value 
μ  into ),(μgϕ  where ,RR:)( qq

g →⋅ϕ  for ,...,,1 hg =  
are a set of known functions, the functions gϕ  characterise 
univocally h  distinct clusters (error patterns), differing each 
other only on the location parameter. For instance, if the 
systematic error possibly affects all the variables sX  for 

,...,,1 qs =  in the same manner by transforming their 
expected values sμ  according to ,μμ Css +→  where C  is 
a known constant, the number of clusters will be ,2qh =  
i.e., the number of different combinations of error 
occurrence on the q  variables (including the case of no 
error). In this case, each function gϕ  and each 
corresponding cluster, is associated with one of the q2  
possible sub-sets of variables affected by the error; e.g., the 
group G  characterised by the mean vector =Gμ  

,)μ...,,μ,μ,μ,μ( 4321 qC+  is a cluster of units with 
error affecting only the variable 2X . We remark that we 
assume a common covariance matrix because we make the 
hypothesis that the possible random error acts in the same 
way on all the data.  

For the error localisation purpose we follow a model-
based approach based on finite mixture models, where each 
mixture component ,...,,1, hgGg =  represents a single 
error pattern. Formally, we assume that ,)...,,( 1 iqii YY=Y  
for ,...,,1 ni =  are iid w.r.t ),; (1 tt

h
t t f θ⋅π∑ =  where 

1=π∑t t  and 0≥πt . The mixing parameters tπ  represent 
the probability that an observation belongs to the tht  
mixture component.  

In order to classify an observation iy  in one of the h  
groups, we compute the posterior probability 

=τ ),;( πθig y  pr( thi  observation ),,;| πθigG y∈  that is 

....,,1

);();(),;(
1

hg

ff
h

t
tittiggig

=

ππ=τ ∑
=

θθπθ yyy g 
 

(1)
 

The thi  observation is assigned to the cluster ,tG  if 

.;...,,1),;(),;( tghgigit ≠=πτ>τ θπθ yy  

The previous allocation rule is the optimal solution for 
the classification problem, in the sense that it minimises the 
overall error rate (Anderson 1984, Chapter 6 ).  

Since, in place of the parameters ,),( πθ  generally 
unknown, we use the maximum likelihood estimates 

),ˆ,ˆ( πθ  the classification rule becomes: 

.;...,,1)ˆ,ˆ;()ˆ,ˆ;( tghgigit ≠=πτ>πτ θθ yy  (2) 

We assume that the );( ttf θy  is a multivariate normal 
density ,( tμMN )∑  and that each function )(⋅gϕ  acts on 
the mean vector μ  as a translation: ,)( gg C+=ϕ μμ  where 

gC  represents the translation vector for the mean of the thg  
cluster, and it is supposed to be known. This setting, as 
already noticed, is suitable for dealing with unity measure 
error. In order to compute the likelihood estimates, we use 
the EM algorithm as suggested in McLachlan and Basford 
(1988). Nevertheless, an additional effort is necessary to 
adapt the algorithm to our particular situation, where the 
mean vectors of the mixture components are linked by a 
known functional relationship. Thus, while in the non-
constrained case (McLachlan and Basford 1988) a different 
mean vector has to be estimated for each mixture 
component, in our constrained situation only one mean 
vector needs to be estimated. The resulting modified EM 
algorithm consists of defining some initial guess for the 
parameters to be estimated forˆ )0(

gπ  ,...,,1 hg =  
,ˆ( )0(μ )ˆ )0(∑  and applying until convergence the following 

recursive scheme:  
i) compute the posterior probabilities =τ )(k

gi  
) ,;()( πθi

k
g yτ  under the current estimates ,ˆ )(kπ  

,ˆ )(kμ )(ˆ k∑  (k is the index referring to the thk  cycle) 

( ) ( )
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ii) calculate the new estimates by the following recursive 
equations: 

n
n

i

k
gi

k
g /ˆˆ

1

)()1( ∑
=

+ τ=π  

∑∑∑
=

+

==

+ π−τ=
h

g

k
gg

n

i
i

k
gi

h

g

k n
1

)1(

1

)(

1

)1( ˆ/ˆˆ Cyμ  

( )( ) .ˆ/

ˆ

)1()1()1(

1 1

)(
)1(ˆ

+++

= =

+

π−−

τ=∑∑

k
g

k
gi

k
gi

h

g

n

i

k
gi

k

n
'μμ yy

∑
 

We remark that )(ˆ k
gμ  stands for g

k C+)(μ̂ . 
In practical applications, it turns out that a crucial role is 

played by the choice of starting points, as usual in the EM 
algorithms (see Biernacki, Celeux and Govaert 2003). To 
overcome this problem, we use an initialisation strategy, 
following Biernacki et al. (2003), consisting of several short 
runs in terms of number of iterations, of the algorithm from 
random initialisations followed by a long run of EM from 
the solution maximising the observed log-likelihood. 

It is worth to mention that, due to the location constraints, 
the parameters to be estimated are sensibly fewer than those 
in a usual mixture problem. Actually the higher is the 
number of variables analysed the bigger is this difference; 
for instance in the case of three variables and 8 clusters we 
need to estimate 16 parameters instead of 37. This aspect is 
particularly important when we deal with small samples. 
Moreover, constraints on cluster locations make easier to 
identify “rare clusters”. In fact, being the relative distances 
between mean vectors fixed, the estimation problem reduces 
to estimate the location of the convex polyhedron whose 
vertices are the cluster centroids. In other words, since the 
location of one centroid univocally determines the positions 
of all the others, small cluster parameters are more easily 
estimated than if they were not constrained.  

Since the introduced modelling is based on the 
assumption that observations are normally distributed, 
model validation is an issue to take into account. The 
problem of assessing normality in mixture models is well 
described in McLachlan and Basford (1988). It is essentially 
based on the quantities giâ  described in the following. Let 

giy  for gmi ˆ...,,1=  be the observations assigned to the 
thg  cluster for hg ...,,1= , according to the estimated 

model. Let gip̂  be the value calculated using the estimated 
parameters, following the formula: 

,
;ˆ,ˆ)1ˆ()(

;ˆ,)/ˆ(
ˆ

ˆ

ˆ

⎟
⎠
⎞

⎜
⎝
⎛−−+ν

⎟
⎠
⎞

⎜
⎝
⎛ν

=
∑

∑

ggigg

ggig

gi

Dmmq

Dqm
p

μ

μ

y

y
 (3) 

where );,(D M⋅⋅  is the Mahalanobis squared distance 
based on the metric ,M  and .qhn −−=ν  We define giâ  

as the area to the right of the gip̂  value under the ν,qF  
distribution (for details see McLachlan and Basford 1988, 
Chapter 2). 

Under the normality assumption, giâ  for gmi ˆ...,,1=  is 
approximately uniformly distributed on (0,1). Hawkins 
(1981) suggests using the Anderson – Darling statistic for 
assessing the uniform distribution of giâ . The giâ  are also 
useful to detect outliers, i.e., atypical observations with 
respect to the model. In McLachlan and Basford (1988) the 
lower is giâ  the higher is the probability of giy  of being 
atypical, thus all observations with ,ˆ α<gia  where α  is a 
specified threshold, can be considered as atypical. 
Suggested threshold levels range from 05.0=α  to 

,005.0=α  depending on which outlying observations 
(more or less extreme values) are to be selected.  

 
3. Diagnostics for Selective Editing  

Once the parameters of the mixture have been estimated, 
we are able to classify data into the different clusters, i.e., 
for each observation we can assess whether it is in error or 
not, and which variables are in error. However, different 
types of critical observations can be identified after the 
modelling phase: units classified in a cluster, but having a 
non-negligible probability of belonging to another cluster, 
and observations that are outliers with respect to the model.  

In order to increase data accuracy it would be useful to 
make a double check on critical observations (through either 
a clerical review or, in the most difficult cases, a follow-up). 
On the other hand, in order to reduce possible over-editing 
and editing costs, the manual review and/or follow up 
should be concentrated on the most critical observations. 
The proposed mixture model directly provides diagnostics 
that can be used to this aim.  

A first type of critical units is represented by possibly 
misclassified observations. In order to measure the degree of 
belief in the class assigned to an observation iy  we can 
consider the corresponding probability resulting from (2). 
Observations, for which this probability is not very close to 
one, have a non-negligible probability to belong to another 
cluster. These observations are those in the region where the 
mixture components overlap each other.  

In addition to the previous type of critical units, there are 
other observations that are far from all the clusters (all the 
mixture components), i.e., outliers with respect to the 
model. Also these observations represent critical situations. 
In order to identify this kind of outlier we refer to the 
quantities ijâ  described in the previous section.  

Classification probability and atypicality index giâ  
should be used, according to a selective/significance editing 
approach (Latouche and Berthelot 1992; Lawrence and 
McKenzie 2000), to build up appropriate score functions to 
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prioritise critical units. An example of how to use these 
diagnostics to this aim is given in subsection 4.2. 

 
4. Illustrative Examples   

In this section some experiments carried out in order to 
investigate the peculiarities of the proposed method are 
presented. Firstly, through a simulation study, we analyse 
the performance of the proposed model when applied to 
data that depart from normality. Secondly, through an 
application on real data, we describe how this approach can 
be applied in Official Statistics.  

All the experiments are performed using the R environ-
ment for statistical computing (http://www.r-project.org/).  
4.1 Simulated Example: Departure from Normality  

In this experiment we describe the results obtained by 
applying the mixture approach to the three different 
populations depicted in the first line of Figure 2. The first 
distribution is a bivariate normal (MN), hence it represents 
the case when the model is correctly specified. The second 
one corresponds to a bivariate t distribution (MT), i.e., it 
mimes the situation when the departure from normality is 
essentially in having heavier tails. The last one is a bivariate 
skew–t distribution (ST) (Azzalini and Capitanio 2003, 
Azzalini, Dal Cappello and Kotz 2003), and it represents a 

population distributed according to an asymmetric distri-
bution with heavy tails.  

From these distributions we build a four components 
mixture model by adding to each unit one of the four 
translation vectors ),0,0(1 =C  )),000,1log(,0(2 =C  

),0),000,1log((3 =C  ))000,1log(),000,1log((4 =C  with 
probabilities ,5.01 =π  ,1.02 =π  ,1.03 =π   and 3.04 =π  
respectively. These parameters represent the mixing 
proportions of the mixture model and refer respectively to 
the probabilities of no translation in the variables, translation 
in only one of the two variables, and translation in both 
variables. From each mixture, we draw 100 samples of 
1,000 observations. In the second line of Figure 2, we report 
one of these samples (MN – Mixt, MT – Mixt, ST – Mixt), 
corresponding to the three different populations MN, MT, 
ST respectively. 

For each sample, we compute the number of correct 
classifications obtained by using the mixture approach 
described in section 2. The mean number of correct 
classifications over the 100 samples is reported in Table 1.  

As it can be seen in Table 1, the frequency of correct 
classifications decreases with the departure from normality. 
However it seems acceptable also in the critical case ST, 
where the population is characterised by both asymmetry 
and heavy tails.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Contour plots of the three bivariate distributions multinormal (MN), t – student 
(MT), skew – t (ST), and scatter plot of the corresponding mixtures MN – Mixt,  
MT – Mixt, ST – Mixt. 

 

  

ST – Mixt MT – Mixt MN – Mixt 

ST MT MN 
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Table 1 
Frequency of Correct Classifications 

 

 MN MT ST 

% correctly classified 98.5  97.5 95.6 

 
As discussed in section 3, the mixture approach provides 

elements (such as the degree of atypicality and the 
classification probability) that can be used in order to 
prioritise units to be clerically reviewed. Therefore, an 
overall assessment of the procedure should consider also the 
results obtained through a selective editing approach based 
on these model diagnostics. 

In order to analyse the characteristics of atypicality index 
and classification probability, we examine a single sample 
of 1,000 observations drawn from the three populations so 
far introduced. In Figure 3, the three samples MN – Mixt(a), 
MT – Mixt(a), ST – Mixt(a) are represented, furthermore the 
misclassified units are depicted with a cross in the same 
graph. The number of misclassified units is 19 for 

Mixt,MN−  20 for MT – Mixt, and 36 for ST – Mixt. 
On this sample, we focus on the impact of different 

threshold levels both for atypicality )(α  and classification 
probability ).(β  For each threshold, we report in Table 2 
and Table 3 the number of units below that threshold, i.e., 
the number of critical observations (N. Atyp, N. Pr. Class), 

and among them the number of misclassified units (Atyp - 
Misclas, Pr. Class - Misclas).  

As far as atypicality is concerned, we note that when the 
model is correctly specified, the importance of the 
atypicality index in recovering misclassified units is 
negligible, while the classification probabilities are more 
effective. On the other hand the degree of atypicality is 
important when the model departs from normality. It is clear 
that the number of observations selected for a given 
combination of thresholds α  and β  is not equal to the sum 
of the frequencies obtained in Table 2 and Table 3. Thus, in 
order to evaluate the joint impact of these two indices we 
choose the two following thresholds 005.0=α  and 

.975.0=β  We report in Figure 3 (second line) the units 
selected only for the atypicality value (squares), only for the 
classification probability (triangles), and for both of them 
(crosses). From these figures we see how the impact of 
atypicality is mainly on outliers identification while the 
classification probability works on the overlapping regions. 
In Table 4 the number of selected units and, out of them the 
number of misclassified units are shown. 

We note that for population MN – Mixt, apart one 
observation, all the misclassified units are selected. For 

Mixt,MT−  we are able to select 14 out of the 20 
misclassified units, and in the most critical sample ST – Mixt 
we select 24 out of the 36 misclassified units.                            

Figure 3. Misclassified units (crosses) in MN – Mixt(a), MT – Mixt(a), ST – Mixt(a). Critical 
units for atypicality (square), for classification probability (triangle), and for both 
of them (cross), in MN – Mixt(b), MT – Mixt(b), ST – Mixt(b).  

MN – Mixt (b) MT – Mixt (b) ST – Mixt (b) 

ST – Mixt (a) MT – Mixt (a) MN – Mixt (a) 
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Table 2 
Number of Critical Observations and Misclassified Units with Respect to Three Different Thresholds for Atypicality 

 

 MN – Mixt MT – Mixt ST – Mixt 
α  N. Atyp Atyp – Misclas N. Atyp Atyp – Misclas N. Atyp Atyp – Misclas 

0.05 50 1 84 9 68 14 
0.01 15 0 50 7 33 8 
0.005 8 0 39 7 20 5 
0.001 4 0 25 4 14 2 

 
Table 3 

Number of Critical Observations and Misclassified Units with Respect to Three Different Thresholds for Classification Probability 
 

 MN – Mixt MT – Mixt ST – Mixt 
β  N. Pr. Class Pr. Class – Misclas N. Pr. Class Pr. Class – Misclas N. Pr. Class Pr. Class – Misclas 

0.99 119 19 63 12 182 26 
0.975 76 18 46 11 82 26 
0.95 55 14 35 9 66 21 

 
Table 4 

Number of Critical Observations and Misclassified Units with Respect to Atypicality and Classification Probability 
 

 MN – Mixt MT – Mixt ST – Mixt 
Thresholds N.Crit. Units N. Misclas  N.Crit. Units N. Misclas N.Crit. Units N. Misclas 

=α 0.005, =β 0.975 84 18 79 14 98 24 

 
 
4.2 An Application to Real Data: The 1999 Italian 

Water Survey System   
In this section we describe an application of the mixture 

model approach to real survey data. The data are taken from 
the 1999 Italian Water Survey System (WSS). The WSS is a 
census that collects information on water abstraction, supply 
and usage for the 8,100 Italian municipalities. We restrict 
our analysis to the municipalities belonging to one of the 
data domains defined by altimetry (2,041 observations) and 
to the main variables Total Invoiced Water (TI) and Total 
Supplied Water (TS). Both these variables refer to water 
volumes and the respondents are requested to provide them 
in thousands of cubic meters. The scatter plot on log-scale 
of per capita water invoiced (WI) versus per capita water 
supplied (WS) (Figure 4) shows the presence of four clusters 
corresponding to unity measure error in one, both, or none 
of the target variables. This is probably due to the 
misunderstanding of some respondents that expressed water 
volumes in litres or in cubic meters rather than thousands of 
cubic meters, as requested. As expected, the two most 
populated clusters are those corresponding to non-erroneous 
units and to units where both variables are in error. 
Nevertheless, we can note the presence of two rare clusters 
corresponding to observations where the unity measure 
error affects only TI or only TS respectively.  

In Table 5 a label is assigned to each group associated 
with a specific error pattern. For the sake of simplicity we 
introduce two flags ETS and ETI assuming value 1 or 0, 

depending on whether the corresponding variables are 
affected by the unity measure error or not, respectively.  

In order to identify and correct the unity measure error 
we apply the procedure described in sections 2 and 3. We 
classify each observation according to a specific error 
pattern, i.e., we assign each unit to one of the clusters ,tG  
for .4...,,1=t  The results are reported in Table 6.  

For each unit the atypicality index is also calculated and 
the threshold 005.0=α  is chosen in order to flag atypical 
units. According to this threshold, 71 observations are 
selected as atypical, marked by “crosses” in Figure 7. Once 
the values giâ  are computed according to Formula (3), a test 
assessing the normality assumption can be performed. 
Actually, following McLachlan and Basford (1988, Chapter 
2), the Anderson – Darling test on the uniformity of giâ  on 
each single estimated cluster is performed. The p – values are 
below 0.001 for the two largest clusters. Since the test is 
based on asymptotical approximations, we do not take into 
account the results on the other two rare populations. In 
Figure 5 we report the empirical sample quantiles versus the 
normal quantiles of the variables log(WI) and log(WS), 
focusing only on the subset of data classified as non-
erroneous. We notice that departure from normality is 
mainly due to heavy tails. Based on the results obtained in 
section 4.1, where the method performed satisfactorily also 
in non-gaussian setting, we are confident about the good 
performance of the mixture approach on the survey data. 
This expected behaviour is confirmed by the application 
results showed in the following. 
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Figure 4. Scatter plot of log(WS) and log(WI). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Normal qq – plot of log(WS) and log(WI). 

 

 

Table 5 
Error Patterns and Error Labels 

 

Error pattern 
ETS  = 0 
ETI  = 0 

ETS = 0 
ETI  = 1 

ETS = 1 
ETI  = 0 

ETS = 1 
ETI  = 1 

Cluster label G1 G2 G3 G4 
 
 

Table 6 
Number of Units Assigned to Each Cluster 

 

Cluster label G1 G2 G3 G4 
N. of units 1,800 16 10 215 
% 88.2 0.8 0.5 10.5 

 

 

In the remaining part of this section, it is shown how the 
posterior probabilities can be used to prioritise units to be 
reviewed which are likely to provide the greatest editing 
benefit, taking into account the potential impact of the 
clerical editing on the estimates. To this aim, note that a 
wrong classification of an observation causes that the final 
values of at least one variable differ from the corresponding 
true values by a multiplicative factor. These discrepancies 
can seriously affect the accuracy of the estimates leading to 
a strong bias. In order to select the potentially erroneous 
units that most likely have a strong impact on the target 
estimates, we follow the selective editing approach. Let 

21, XX  denote the variables TS, TI respectively. For each 
unit ,...,,1, niui =  and for each variable ,2,1, =jX j  let 
us define: 
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ijX  : data free of systematic error; 
 

ijY  : observed data; 
 

ij
X
~

 : data  after the treatment of systematic error based 
on the classification through mixture model (i.e., 

ijij YX =~
 or 000,1/~

ijij YX =  depending on the 
cluster the unit iu  is assigned to). 

 
Let us suppose that the target estimates refer to population 
totals .)( ijij XXT ∑=  Further, denote by )(⋅ξE  the 
expectation over the distribution of the random variable jX  
conditional on the observed data ijY  and the data after 
correction .

~
ijX  Then, from the inequality 

≤−∑ |)
~

(| ξ ijiji XE X |
~

| ijiji XXE −∑ ξ  it follows that the 
quantity on the right hand side can be viewed as an upper 
bound for the expected bias of the total estimate for the 
variable jX  based on the corrected values .

~
ijX  The last 

consideration suggests a method for selecting the most 
“influential” units with respect to the estimate :)( jXT  in 
order to guarantee the requested level of accuracy and to 
minimise costs due to manual check, we define a local score 
function ,)(ˆ/)|

~
|( jijijij XTXXES −= ξ  where )(ˆ

jXT  is 
a reference estimate for ),( jXT  for instance the estimate 
from a previous survey, or a robust estimate. In our case, in 
order to robustify the preliminary estimate we first exclude 
from the data the atypical observations, then compute the 
mean value on this subset, and then multiply it by the total 
number of units.  

The local score ijS  measures the impact of the potential 
unity measure error associated to the unit iu  on the target 
estimate ).( jXT  Then, units can be sorted by their score 

ijS  and, starting from the highest values, the first units can 
be selected until the sum of the remaining ijS  values is 
lower than a predefined threshold.  

If both the variables TS and TI are considered 
simultaneously, a global score ,iS  for ,...,,1 ni =  can be 
obtained by suitably combining the local score functions 

.2,1, =jSij  Possible choices are ,2)( 21 iii SSS +=  or 
.max 2,1 ijji SS ==  The latter function, for instance, ensures 

that the impact of the potential unity measure error 
associated with iu  on each estimate is not greater than .iS  

In order to compute the scores ijS  the conditional 
expected value |

~
| ijij XXE −ξ  is to be estimated for each 

unit ,...,,1, niui =  and for each variable jX  for .2,1=j  
This can be easily done through the posterior probabilities. 
For instance, suppose that the unit iu  has been assigned to 
the cluster .2G  This means that, for this unit, the observed 
value of TS )( 1iY  has been considered correct, while the 
observed value of TI )( 2iY  has been flagged as affected by 
unity measure error (i.e., multiplied by 1,000). The 
correction consists of dividing by 1,000 the observed value 

of TI, i.e. ).000,1/
~

,
~

( 2211 iiii YXYX ==  The conditional 
expected value |

~
| ijij XXE −ξ  can be computed as follows: 

)ˆˆ(
000,1

999

)(Pr
000,1

)(Pr
~

431

431
1

211111

iii

ii
i

iiiii

Y

GGuY
Y

GGuYYXXE

τ+τ=

∪∈−+

∪∈−=−ξ

 

),ˆˆ(
000,1

999

)(Pr
000,1

)(Pr
000,1000,1

~

312

31
2

2

42
22

22

iii

i
i

i

i
ii

ii

Y

GGu
Y

Y

GGu
YY

XXE

τ+τ=

∪∈−+

∪∈−=−ξ

 

where 
gi
τ̂  is the estimated probability that unit iu  belongs 

to cluster .gG  In a similar manner the score functions can 
be calculated for all the units. 

In practice, in our application we sort the units by their 
global score ijji SS 2,1max, =  (ascending order). Then we 
exclude from clerical review all the first observations such 
that their cumulative sum of iS  is below ,δ  where δ  is a 
specified tolerance level for the impact on the estimates due 
to errors remaining in data. In Figure 6 the behaviour of the 
cumulative sum of ,, )( kikii SSS ≤∑=  is shown for the first 
most critical 10 observations. We remark that for the sake of 
clarity we have not reported all the observations because for 
most of them )(iS  is close to zero causing an unreadable 
picture for their different magnitude. Note that a residual 
relative error less than 001.0=δ  is expected by selecting 
only the first two units (drawn with crosses).  

In Figure 7 all the units selected because of their 
atypicality (71) and/or the relative impact on estimates of 
their potential errors (2) are shown: crosses correspond to 
observations that are critical for atypicality, squares indicate 
the other two types of critical units.  

A comparison with the results obtained by the official 
procedure is made. Out of the 1,968 units not selected for 
clerical review, 1,911 observations are error free or affected 
by unity measure error only. For all of them the 
classification of the mixture model is correct. Out of the 
remaining 57 units characterised by other error typologies, 
45 are classified as non-affected by the unity measure error, 
while 12 as units with the 1,000 error in both the variables. 
This last misclassification can be explained by the presence 
of another systematic error (times 100, 10,000 factors) that 
is not taken into account in the model used for this example. 
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Figure 6. Plot of the cumulative score )(iS  for the first  

most critical 10 observations.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Scatter plot of log(WS) vs log(WI). Crosses indicate 
critical units for atypicality, squares mark critical units 
for the impact of their potential error.  

A further comparison is about the estimate of the totals. 
Under the hypothesis that the values selected for a clerical 
review are correctly restored, the relative differences 
between the “true” total values according to the official 
procedure )( jXT  and the model estimate )(ˆ

jXT  as 
,)()|)()(ˆ|()( jjjj XTXTXTXB −=  for 2,1=j  are 

=)( 1XB 005.0  and .002.0)( 2 =XB  These values are not 
directly comparable with the tolerance level ,001.0=δ  in 
fact this threshold relates only to impact of the remaining 
unity measure errors, while )( jXB  is also affected by other 

kind of errors. Thus, for a more direct comparison, we 
replace for these units the wrong values with the “true” ones 
obtaining .0)()( 21 == XBXB  This particularly high 
performance of the model is justified by the low degree of 
overlapping of the clusters as clear in Figure 7. 

 
5. Final Remarks and Further Research  

In this paper we propose a finite mixture model to deal 
with a particular type of systematic error that frequently 
affects numerical continuous survey data: the unity measure 
error times a constant factor. The proposed approach has the 
advantages, with respect to the traditional ones, to formally 
state the problem in a multivariate context, to be easily 
implemented in generalised software, and to naturally 
provide useful diagnostics for prioritising doubtful units 
possibly containing influential errors. The latter character-
istic is particularly important when the situation is critical, 
i.e., when different error patterns overlap each other or in 
other words when unity measure errors are among plausible 
observations. In these circumstances a clerical review is 
needed. Hence, it is important to optimise the selection of 
critical observations in order to save time and costs. All 
these advantages are the natural consequence of the intro-
duction of a model-based technique. On the other hand, it is 
clear that the use of a model-based approach implies prob-
lems related to model assumptions. However, based on the 
experiments illustrated in the paper, it seems that also in 
cases of departure from the normality assumption, the 
proposed technique performs satisfactorily. Nevertheless, it 
is worth to mention that for extreme departure from normal-
ity, e.g., when the distribution is not unimodal, the method 
is expected to fail. This can happen in real situations when 
true data contain different clusters, for instance differences 
in men and women income might cause a bimodal 
distribution for the income itself. In some cases the problem 
could be overcome by stratifying data with respect to some 
explicative variables, e.g., sex in the previous example. An 
alternative approach to this specific problem could be based 
on modelling each cluster in turn as a Gaussian mixture, 
thus obtaining a “mixture of mixture models” (McLachlan 
and Peel 2000; Di Zio, Guarnera and Rocci 2004). 

Finally, a last concern is about the number of variables 
that can be treated simultaneously. Actually, the number of 
clusters and then the number of mixing parameters tπ can 
have an exponential growth with respect to the number of 
variables, making the parameter estimation a critical task. 
However it is worthwhile noting  that the number of 
parameters related to the mean vector and covariance matrix 
increases much slower, due to the constraints characterising 
our model.  
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